Sunday, May 31, 2015

'Self Replicating Molecules': Why This Theory Should Be Rejected



One paper on Self Replicating Molecules [1] begins thus…“The ability to invent new materials that replicate themselves would lead to a paradigm shift in materials discovery.”  I do not doubt that. But so would the ability to invent new machines that produce more energy than they consume. That too, would revolutionize a few things as well. Sadly, neither one of these is based on solid physics, and largely this is due to the similar problems of thermodynamics.

We note that in the abstract of this paper, it is proposed to “test” virtual colloidal particles in computer simulations. And it concludes that it makes (with such computer models) such virtual colloidal particles replicate successfully. When one considers the fact that these are computer algorithms making simulated molecules, such claims are rather dubious, as to their correlation to actual physics. We note that these “molecules” themselves, are nothing but algorithms, which they’ve assigned certain rules, not unlike any other programming system, they of course must have logical rules of how the program responds. But unlike nature, how does a program “behave” differently than the experimentor expects? In theory, aren’t these results precisely what the program dictated them to be? Another very important question to ask, in my opinion is to the relevance of such models in showing anything useful, particularly since “self replicating molecules” would be expected to be real chemistry. This is after all an applied division of science, and though I’m quite familiar with computer models in chemistry, there is a very large difference here. In chemistry, one is not attempting to prove necessarily that thermodynamics might be violated. The models are based largely, on pre-existing empirically validated assumptions. These assumptions are not unlike more simplistic mathematical models of chemistry that are ubiquitous, i.e. stoichiometric laws, rate constants, and so on, that current computer models must account for.

On the other hand, there is no existing demonstrable model for self-replication of molecules. Nor are there or would there be under such circumstances, any parameters for doing so. In other words given the problem area and the circumstances facing such experimentation, are computer models not doing more to convince researchers of a possibility that doesn’t exist? For one thing, how precisely, does one “test” an output in a virtual system in an independent fashion?

I’m going to summarize and conclude the disagreements of my theory with self-replicating systems here:
http://causaldistinctions.blogspot.com/2015/05/does-life-violate-second-law-of_14.html
Firstly, the self-replicating model presumes that the potential entropy can arbitrarily be maintained by the molecular system. In other words, it assumes that entropy can be passively removed by the system of molecules, in direct contradiction to what I propose HERE. (i.e. in a virtual closed system where the potential of S(inside) is equivalent to the potential of S(outside) in a natural system as posited by Condition I.

Secondly, they are in fact assuming a non-self replicating system in performing a computer simulation. One cannot “model” such a system by using a computer to demonstrate the production of self replicating molecules as this violates the entropic boundary. We can state that in this case, they are adding external work energy, and artificially lowering the entropy potential of the system. As I discuss in the case of machines, either perpetual energy or perpetual motion machines are forbidden in the virtual closed system of Condition I or Condition II. These results are not what would be expected. The amount of useful work energy, Eo (We have made no distinction between total potential energy here, it is net energy) that is presumably entering the system is not sufficient, i.e. Eo<< than the useful work energy required to maintain the machine against its intrinsic increase in entropy. I have defined potential entropy as the actual difference in entropy between itself and its surroundings. And though we can imagine that potential energy is being added to the system from an outside source, capable of doing work, thereby creating the impression that the entropy is being lowered) what is discovered in this model is that in the closed virtual system no work is being performed and there are specific conditions that are discussed for why this does not occur. As I further discuss in (27) HERE, we discover that there is a critical lack of any imposed resistance. Diffusion and heat loss occur passively from the energetic molecules until they reach the classic maximum entropy permitted. The problem in understanding this new theorem is defining entropy differently. Boltzmann, Schrodinger and others have defined this I believe, classically, without making exceptions to animate vs inanimate systems. We are defining this in a special case of the virtual closed system, which is a natural system without sufficient input of Eo to do useful work on the system. As we’ve said, in this case we should not expect to find a potential difference in entropy between the inside and outside of such a system, i.e. across the “entropic barrier”, as there is no means to increase or decrease the absolute entropy of a system of molecules, nor can the actively transport lower entropy into and across the barrier to reduce entropy. This is rather surprising and disagrees or contradicts with the conventional entropy definition.
 

The dictates of such a system are not the natural model, if they were, then obviously they would already know what the algorithm was for the Second Law. Obviously these are not known to  anyone. They are obviously not taking into account the entropy that is built up in their system. If they did, they would realize that it conforms to the Virtual Closed System model I’ve described recently. Regarding replication that is demonstrated, again, in computer simulations, there is perhaps, more “real” replication in a SIMS game. The “respawn” that occurs in many games is one example of perhaps “self-replication” that follows rigid programming rules and algorithms of the program, but of course no one seriously believes this has any bearing to reality. The offices that the programmers of SIMS use, likely don’t look like the Harvard physics, nor do their algorithms say they’re following some arbitrary “chemical rules”, but the way in which “Mr Sim” and “Ms Dor”,  “get together” and “replicate” is presumably based on algorithms with similar hard and logical assumptions, just like a simulator at a physics lab. Enter the variability of inputs of a player, and you have perhaps many different “unexpected” outcomes. These are no more “chemical” than the SIMS buildings are physical structures obeying the laws of engineering.
One of the presumptions of my thesis is in fact that it is not possible for such manipulations to be conducted on a system, as these directly interfere by the disruption of the input of useful energy into the system. Self replacing systems violate the “entropic barrier” of a virtual closed system, of which an inanimate system of molecules is contained, if it is truly self-contained and isolated as is assumed.

Under such conditions, they would have more chance in waiting for the spontaneous evolution of prokaryotes than of witnessing the self replication of a group of molecules. And if my theory is correct, the unexpected result is that it may be much much harder in fact, to observe a system of molecules self-replicate than the former situation, with the proviso that there is space for the evolution of higher life forms, (i.e. the virtual closed system is large enough). So allow another 3 billion years,…thus one would have to wait essentially, for an infinite amount of time. Also, if my theory is correct, we find that it might be easier to make energy and violate the first law, than to do what the proponents of self-replicating molecules propose to attempt. Where is the energy diagram, the pathway? If this theory is correct, such energy barriers might be of much greater difficulty for self replication of small groups of molecules, than for entire organisms [2].



1. Zeravcic, Z and Brenner, M Self Replicating Colloidal Structures (2013)http://www.pnas.org/content/111/5/1748.full.pdf+html
NOTE: The paper might not in fact assume a strictly closed system, however it is cited as support for theory of Self Replicating Molecules more generally, and specifically to those references I've already discussed in other blogs.
2. (see argument 5 *http://causaldistinctions.blogspot.com/2015/05/does-life-violate-second-law-of_14.html)
3. Saccana et al (2010) http://www.physics.nyu.edu/pine/reprints/SacannaPineCOCIS2011.pdf

3 comments:

  1. Summary of two objections to "Self Replication Theory" also ref'd in "Does Life Violate Second Law..?" (1) Firstly, the self-replicating model presumes that the potential entropy can arbitrarily be maintained by the molecular system. In other words, it assumes that entropy can be passively removed by the system of molecules, in direct contradiction to what I propose HERE. (i.e. in a virtual closed system where the potential of S(inside) is equivalent to the potential of S(outside) in a natural system as posited by Condition I.

    ReplyDelete
  2. (2) Secondly, the "Self Replication Model" in fact is assuming a non-self replicating system in performing a computer simulation. One cannot “model” such a system by using a computer to demonstrate the production of self replicating molecules as this violates the entropic boundary. We can state that in this case, they are adding external work energy, and artificially lowering the entropy potential of the system. As I discuss in the case of machines, either perpetual energy or perpetual motion machines are forbidden in the virtual closed system of Condition I or Condition II. These results are not what would be expected. The amount of useful work energy, Eo (We have made no distinction between total potential energy here, it is net energy) that is presumably entering the system is not sufficient, i.e. Eo<< than the useful work energy required to maintain the machine against its intrinsic increase in entropy. I have defined potential entropy as the actual difference in entropy between itself and its surroundings. And though we can imagine that potential energy is being added to the system from an outside source, capable of doing work, thereby creating the impression that the entropy is being lowered) what is discovered in this model is that in the closed virtual system no work is being performed and there are specific conditions that are discussed for why this does not occur. As I further discuss in (27) HERE, we discover that there is a critical lack of any imposed resistance. Diffusion and heat loss occur passively from the energetic molecules until they reach the classic maximum entropy permitted. The problem in understanding this new theorem is defining entropy differently. Boltzmann, Schrodinger and others have defined this I believe, classically, without making exceptions to animate vs inanimate systems. We are defining this in a special case of the virtual closed system, which is a natural system without sufficient input of Eo to do useful work on the system. As we’ve said, in this case we should not expect to find a potential difference in entropy between the inside and outside of such a system, i.e. across the “entropic barrier”, as there is no means to increase or decrease the absolute entropy of a system of molecules, nor can the actively transport lower entropy into and across the barrier to reduce entropy. This is rather surprising and disagrees or contradicts with the conventional entropy definition.

    ReplyDelete
  3. (3) This third argument was an additional result of analysis using the Virtual Closed System (VCS) model. "Under such conditions, they would have more chance in waiting for the spontaneous evolution of prokaryotes than of witnessing the self replication of a group of molecules. And if my theory is correct, the unexpected result is that it may be much much harder in fact, to observe a system of molecules self-replicate than the former situation, with the proviso that there is space for the evolution of higher life forms, (i.e. the virtual closed system is large enough). So allow another 3 billion years,…thus one would have to wait essentially, for an infinite amount of time. Also, if my theory is correct, we find that it might be easier to make energy and violate the first law, than to do what the proponents of self-replicating molecules propose to attempt." So this outcome also illustrates the unavoidable relatedness between energy requirements of Eo for the system and the lack of reversibility of second law processes if this is not met.

    ReplyDelete